Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 672
Filtrar
1.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690726

RESUMO

Proline substitutions within the coiled-coil rod region of the ß-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.


Assuntos
Substituição de Aminoácidos , Miopatias Distais , Prolina , Animais , Camundongos , Humanos , Prolina/genética , Prolina/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Mutação de Sentido Incorreto , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/química , Feminino , Masculino , Camundongos Transgênicos , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
2.
Sci Rep ; 14(1): 1117, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212351

RESUMO

DNA polymerase eta (Polη) is the only translesion synthesis polymerase capable of error-free bypass of UV-induced cyclobutane pyrimidine dimers. A deficiency in Polη function is associated with the human disease Xeroderma pigmentosum variant (XPV). We hereby report the case of a 60-year-old woman known for XPV and carrying a Polη Thr191Pro variant in homozygosity. We further characterize the variant in vitro and in vivo, providing molecular evidence that the substitution abrogates polymerase activity and results in UV sensitivity through deficient damage bypass. This is the first functional molecular characterization of a missense variant of Polη, whose reported pathogenic variants have thus far been loss of function truncation or frameshift mutations. Our work allows the upgrading of Polη Thr191Pro from 'variant of uncertain significance' to 'likely pathogenic mutant', bearing direct impact on molecular diagnosis and genetic counseling. Furthermore, we have established a robust experimental approach that will allow a precise molecular analysis of further missense mutations possibly linked to XPV. Finally, it provides insight into critical Polη residues that may be targeted to develop small molecule inhibitors for cancer therapeutics.


Assuntos
Xeroderma Pigmentoso , Humanos , Pessoa de Meia-Idade , Dano ao DNA , Mutação de Sentido Incorreto , Prolina/genética , Dímeros de Pirimidina , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia , Feminino
3.
Virus Genes ; 60(1): 32-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184501

RESUMO

Fifty-seven Gallid alphaherpesvirus 2 (GaHV-2) isolates, collected during a 30-year period (1990-2019) from commercial poultry flocks affected by Marek's disease (MD), were molecularly characterised. The GaHV-2 meq gene was amplified and sequenced to evaluate the virus virulence, based on the number of PPPPs within the proline-rich repeats (PRRs) of its transactivation domain. The present illustration of virus virulence evaluation on a large scale of field virus isolates by molecular analysis exemplifies the practical benefit and usefulness of the molecular marker in commercial GaVH-2 isolates. The alternative assay of GaVH-2 virulence pathotyping is the classical Gold Standard ADOL method, which is difficult and impossible to employ on a large scale using the Specific Pathogen Free (SPF) chicks of the ADOL strains kept in isolators for two months. The phylogenetic analysis performed in the present study showed that the meq gene amino acid sequences of the 57 Israeli strains divide into 16 phylogenetic branches. The virulence evaluation was performed in comparison with 36 GaHV-2 prototype strains, previously characterised by the in vivo Gold Standard ADOL assay. The results obtained revealed that the GaHV-2 strains circulating in Israel have evolved into a higher virulence potential during the years, as the four-proline stretches number in the meq gene decreased over the investigated period, typically of very virulent virus prototypes. The present study supports the meq gene molecular markers for the assessment of field GaVH-2 strains virulence.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Proteínas Oncogênicas Virais , Doenças das Aves Domésticas , Animais , Aves Domésticas , Israel , Virulência/genética , Filogenia , Proteínas Oncogênicas Virais/genética , Herpesvirus Galináceo 2/genética , Galinhas , Prolina/genética
4.
Can J Microbiol ; 70(1): 15-31, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699259

RESUMO

Cold stress is an important factor limiting rice production and distribution. Identifying factors that contribute to cold tolerance in rice is of primary importance. While some plant specific genetic factors involved in cold tolerance have been identified, the role of the rice microbiome remains unexplored. In this study, we evaluated the influence of plant growth promoting bacteria (PGPB) with the ability of phosphate solubilization on rice cold tolerance and survival. To reach this goal, inoculated and uninoculated 2-week-old seedlings were cold stressed and evaluated for survival and other phenotypes such as electrolyte leakage (EL) and necessary elements for cold tolerance. The results of this study showed that of the five bacteria, Pseudomonas mosselii, improved both indica and japonica varietal plants' survival and decreased EL, indicating increased membrane integrity. We observed different possible cold tolerance mechanisms in japonica and indica plants such as increases in proline and reduced glutathione levels, respectively. This bacterium also improved the shoot growth of cold exposed indica plants during the recovery period. This study confirmed the host genotype dependent activity of P. mosselii and indicated that there is an interaction between specific plant genes and bacterial genes that causes different plant responses to cold stress.


Assuntos
Glutationa , Oryza , Glutationa/genética , Prolina/genética , Genótipo , Temperatura Baixa
5.
BMC Cancer ; 23(1): 1241, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104097

RESUMO

BACKGROUND: Prostate cancer is a common solid tumor that affects a significant number of men worldwide. Conventional androgen deprivation therapy (ADT) increases the risk of developing castration-resistant prostate cancer (CRPC). Effective clinical management of patients with CRPC is challenging due to the limited understanding. METHODS: In this study, transcriptomic and metabolomic profiles of androgen-dependent prostate cancer cell line LNCaP and the androgen-independent cells developed from LNCaP cells (LNCaP-ADR) were investigated using RNA-sequencing and LC-MS/MS, respectively. The differentially expressed genes and metabolites were analyzed, and integrative analysis of transcriptomic and metabolomic data was further conducted to obtain a comprehensive understanding of the metabolic characteristics in LNCaP-ADR cells. Quantitative real-time PCR (QPCR) was employed to ascertain the mRNA expression levels of the selected differentially expressed genes. RESULTS: The arginine and proline metabolism pathway was identified as a commonly altered pathway at both the transcriptional and metabolic levels. In the LNCaP-ADR cells, significant upregulation was observed for metabolites including 5-Aminopentanoic acid, L-Arginine, L-Glutamic acid, N-Acetyl-L-alanine, and Pyrrole-2-carboxylic acid at the metabolic level. At the transcriptional level, MAOA, ALDH3A2, ALDH2, ARG1, CKMT2, and CNDP1 were found to be significantly upregulated in the LNCaP-ADR cells. Gene set enrichment analysis (GSEA) identified various enriched gene sets in the LNCaP-ADR cells, encompassing inflammatory response, 9plus2 motile cilium, motile cilium, ciliary plasm, cilium or flagellum-dependent cell motility, cilium movement, cilium, response to endoplasmic reticulum stress, PTEN DN.V1 DN, SRC UP.V1 UP, IL15 UP.V1 DN, RB DN.V1 DN, AKT UP MTOR DN.V1 UP, VEGF A UP.V1 UP, and KRAS.LUNG.BREAST UP.V1 UP. CONCLUSIONS: These findings highlight the substantial association between the arginine and proline metabolism pathway and CRPC, emphasizing the need to prioritize strategies that target dysregulated metabolites and differentially expressed genes as essential interventions in the clinical management of CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Androgênios/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antagonistas de Androgênios/uso terapêutico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Transcriptoma , Arginina/genética , Prolina/genética , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Aldeído-Desidrogenase Mitocondrial/genética
6.
J Neuropathol Exp Neurol ; 82(11): 901-910, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37791472

RESUMO

The hexanucleotide G4C2 repeat expansion in C9orf72 is the most frequent genetic cause of familial amyotrophic lateral sclerosis (ALS). Aberrant translation of this hexanucleotide sequence leads to production of 5 dipeptide repeats (DPRs). One of these DPRs is proline-arginine (polyPR), which is found in C9orf72-expanded ALS (C9ALS) patient brain tissue and is neurotoxic across multiple model systems. PolyPR was previously reported to bind and impair proteasomes in vitro. Nevertheless, the clinical relevance of the polyPR-proteasome interaction and its functional consequences in vivo are yet to be established. Here, we aim to confirm and functionally characterize polyPR-induced impairment of proteolysis in C9ALS patient tissue and an in vivo model system. Confocal microscopy and immunofluorescence studies on both human and Drosophila melanogaster brain tissues revealed sequestration of proteasomes by polyPR into inclusion-like bodies. Co-immunoprecipitation in D. melanogaster showed that polyPR strongly binds to the proteasome. In vivo, functional evidence for proteasome impairment is further shown by the accumulation of ubiquitinated proteins along with lysosomal accumulation and hyper-acidification, which can be rescued by a small-molecule proteasomal enhancer. Together, we provide the first clinical report of polyPR-proteasome interactions and offer in vivo evidence proposing polyPR-induced proteolytic dysfunction as a pathogenic mechanism in C9ALS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Humanos , Esclerose Lateral Amiotrófica/patologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Arginina/genética , Arginina/metabolismo , Proteólise , Dipeptídeos/genética , Dipeptídeos/metabolismo , Prolina/genética , Prolina/metabolismo , Demência Frontotemporal/genética , Expansão das Repetições de DNA
7.
Avian Pathol ; 52(6): 401-411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605844

RESUMO

Marek's disease (MD) is caused by oncogenic MD virus serotype 1 (MDV1) and is characterized by lymphoproliferative lesions resulting in high morbidity and mortality in chickens. Despite being ubiquitous on poultry farms, there is a dearth of information on its molecular characteristics in Nigeria. This study aimed at characterizing three virulence genes (Meq, pp38, and vIL-8) of MDV1 from chickens in Ogun state, Nigeria. Blood, feather quill, and tumour samples of chickens from different commercial poultry farms in Ogun State were pooled, spotted on 107 FTA cards, and screened for MDV1 by polymerase chain reaction (PCR). Phylogenetic analysis was carried out to compare Nigerian MDV1 Meq, pp38, and vIL-8 genes sequences with the published references. Thirteen samples were MDV1-positive and the Meq, as well as pp38, and vIL-8 genes from the different samples were 100% identical. The Meq genes contained 339 amino acids (aa) with three PPPP motifs in the transactivation domain and two interruptions of the PPPP motifs due to proline-to-arginine substitutions at positions 176 and 217 resulting in a 20.88% proline composition. Phylogenetic analysis revealed that the Meq gene clustered with strains from Egypt and very virulent ATE2539 strain from Hungary. Mutations were observed in the pp38 protein (at positions 107 and 109) and vIL-8 protein (at positions 4 and 31). Based on the molecular analysis of the three genes, the results indicate the presence of MDV1 with virulence signatures; therefore, further studies on in vivo pathotyping of Nigerian MDV1 from all states should be performed.RESEARCH HIGHLIGHTS Meq, pp38 and vIL-8 genes were 100% identical between Nigerian MDV strains.Proline content in Nigerian meq gene was 20.88% with two PPPP motifs interruptions.Meq, pp38 and vIL-8 genes of Nigerian MDV were similar to Egyptian and Indian strains.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Proteínas Oncogênicas Virais , Doenças das Aves Domésticas , Animais , Galinhas , Filogenia , Nigéria/epidemiologia , Herpesvirus Galináceo 2/genética , Aves Domésticas , Prolina/genética , Doenças das Aves Domésticas/epidemiologia
8.
Nat Genet ; 54(11): 1721-1735, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36347944

RESUMO

Histone post-translational modifications (PTMs) are important for regulating various DNA-templated processes. Here, we report the existence of a histone PTM in mammalian cells, namely histone H3 with hydroxylation of proline at residue 16 (H3P16oh), which is catalyzed by the proline hydroxylase EGLN2. We show that H3P16oh enhances direct binding of KDM5A to its substrate, histone H3 with trimethylation at the fourth lysine residue (H3K4me3), resulting in enhanced chromatin recruitment of KDM5A and a corresponding decrease of H3K4me3 at target genes. Genome- and transcriptome-wide analyses show that the EGLN2-KDM5A axis regulates target gene expression in mammalian cells. Specifically, our data demonstrate repression of the WNT pathway negative regulator DKK1 through the EGLN2-H3P16oh-KDM5A pathway to promote WNT/ß-catenin signaling in triple-negative breast cancer (TNBC). This study characterizes a regulatory mark in the histone code and reveals a role for H3P16oh in regulating mammalian gene expression.


Assuntos
Histonas , Prolina , Animais , Histonas/metabolismo , Metilação , Prolina/genética , Prolina/metabolismo , Hidroxilação , Expressão Gênica , Mamíferos/genética
9.
Fish Shellfish Immunol ; 130: 43-52, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084885

RESUMO

Cystatin F (CyF), an inhibitor of cysteine protease, was widely studied in immune defense and cancer therapy. However, the function of CyF and its latent molecular mechanism during virus infection in fish remain vacant. In our research, we cloned the open reading frame (ORF) of CyF homology from orange-spotted grouper (Ec-CyF) consisting of 342 nucleotides and encoding a 114-amino acid protein. Ec-CyF included two cystatins family sequences containing one KXVXG sequence without the signal peptide, and a hairpin ring containing proline and tryptophan (PW). Tissue distribution analysis indicated that Ec-CyF was highly expressed in spleen and head kidney. Besides, further analysis showed that the expression of Ec-CyF increased during SGIV infection in grouper spleen (GS) cells. Subcellular localization assay demonstrated that Ec-CyF was mainly distributed in cytoplasm in GS cells. Overexpressed Ec-CyF demoted the mRNA level of viral genes MCP, VP19 and LITAF. Meanwhile, SGIV-induced apoptosis in fat head minnow (FHM) cells was impeded, as well as the restraint of caspase 3/7 and caspase 8. In addition, Ec-CyF overexpression up-regulated the expression of IFN related molecules including ISG15, IFN, IFP35, IRF3, IRF7, MYD88 and down-regulated proinflammatory factors such as IL-1ß, IL-8 and TNF-α. At the same time, Ec-CyF-overexpressing increased the activity of IFN3 and ISRE promoter, but impeded NF-κB promoter activity by luciferase reporter gene assay. In summary, our findings suggested that Ec-CyF was involved in innate immunity response and played a key role in DNA virus infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Sequência de Aminoácidos , Animais , Caspase 3/genética , Caspase 8/genética , Proteínas de Peixes/química , Imunidade Inata/genética , Interleucina-8/genética , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Nucleotídeos/metabolismo , Filogenia , Prolina/genética , Prolina/metabolismo , Sinais Direcionadores de Proteínas/genética , RNA Mensageiro/metabolismo , Triptofano/metabolismo , Fator de Necrose Tumoral alfa/genética
10.
Fish Shellfish Immunol ; 130: 538-549, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152800

RESUMO

In the current study, full-length Toll-like receptor 4 (TLR4) cDNA was cloned and characterised in Tor putitora, an important fish inhibiting Himalayan rivers. The complete coding sequence of TpTLR4 is 2457 bp with nine key structural domains, including six leucine-rich repeats (LRRs). The phylogenetic tree revealed that TpTLR4 showed the closest relationship with TLR4 of Cyprinus carpio (96%), Labeo rohita (91%) and Megalobrama amblycephala (88%), all belonging to the Cyprinidae family. CELLO2GO tool revealed that TpTLR4 protein is highly localised in the plasma (67.7%), and the protein has a strong association with myeloid differentiation primary response 88 (MYD88) followed by Tumor necrosis factor receptor-associated factor (TRAF) family. In the toll-interleukin-1 receptor (TIR) domain of TpTLR4, the proline is replaced by the alanine amino acid, thus may give plasticity to the receptor to recognise both bacterial and viral ligands. Molecular docking has revealed that TpTLR4 showed the strongest affinity towards poly (I:C) with the binding energy of -6.1 kcal/mol and five hydrogen bonds among all ligands. Based on our molecular docking results, it can be presumed that TpTLR4 can sense bacterial, fungal and viral molecular patterns with binding sites mainly present in the TpTLR4 LRR9 motif, which spans between 515 and 602 amino acids. Tor putiora TLR4 transcript was ubiquitously expressed in all the tested fish tissues. Although, transcript level was found to be highest in blood and spleen followed by the kidney. The TpTLR4 transcripts showed peak expression in spleen and kidney at 12 h post-injection (hpi) (p < 0.05) of poly (I:C). The constitutive expression of TpTLR4 in various tissues, up-regulation in different tissues and strong binding affinities with poly (I:C) indicate that TpTLR4 may play an essential role in sensing pathogen-associated molecular patterns (PAMPs), particularly of viral origin.


Assuntos
Carpas , Cyprinidae , Alanina , Sequência de Aminoácidos , Animais , Sítios de Ligação , Carpas/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismo , DNA Complementar/genética , Proteínas de Peixes/química , Leucina/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Filogenia , Prolina/genética , Prolina/metabolismo , Receptores de Interleucina-1/genética , Receptor 4 Toll-Like/química , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética
11.
Open Biol ; 12(9): 220187, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36168806

RESUMO

Splicing factor proline- and glutamine-rich (SFPQ) is a nuclear RNA-binding protein that is involved in a wide range of physiological processes including neuronal development and homeostasis. However, the mislocalization and cytoplasmic aggregation of SFPQ are associated with the pathophysiology of amyotrophic lateral sclerosis (ALS). We have previously reported that zinc mediates SFPQ polymerization and promotes the formation of cytoplasmic aggregates in neurons. Here we characterize two familial ALS (fALS)-associated SFPQ variants, which cause amino acid substitutions in the proximity of the SFPQ zinc-coordinating centre (N533H and L534I). Both mutants display increased zinc-binding affinities, which can be explained by the presence of a second zinc-binding site revealed by the 1.83 Å crystal structure of the human SFPQ L534I mutant. Overexpression of these fALS-associated mutants significantly increases the number of SFPQ cytoplasmic aggregates in primary neurons. Although they do not affect the density of dendritic spines, the presence of SFPQ cytoplasmic aggregates causes a marked reduction in the levels of the GluA1, but not the GluA2 subunit of AMPA-type glutamate receptors on the neuronal surface. Taken together, our data demonstrate that fALS-associated mutations enhance the propensity of SFPQ to bind zinc and form aggregates, leading to the dysregulation of AMPA receptor subunit composition, which may contribute to neuronal dysfunction in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Glutamina/genética , Glutamina/metabolismo , Humanos , Mutação , Neurônios/metabolismo , Fator de Processamento Associado a PTB , Prolina/genética , Prolina/metabolismo , Fatores de Processamento de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de AMPA/genética , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Zinco/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(40): e2201738119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161943

RESUMO

Mismatch repair (MMR) is a replication-coupled DNA repair mechanism and plays multiple roles at the replication fork. The well-established MMR functions include correcting misincorporated nucleotides that have escaped the proofreading activity of DNA polymerases, recognizing nonmismatched DNA adducts, and triggering a DNA damage response. In an attempt to determine whether MMR regulates replication progression in cells expressing an ultramutable DNA polymerase ɛ (Polɛ), carrying a proline-to-arginine substitution at amino acid 286 (Polɛ-P286R), we identified an unusual MMR function in response to hydroxyurea (HU)-induced replication stress. Polɛ-P286R cells treated with hydroxyurea exhibit increased MRE11-catalyzed nascent strand degradation. This degradation by MRE11 depends on the mismatch recognition protein MutSα and its binding to stalled replication forks. Increased MutSα binding at replication forks is also associated with decreased loading of replication fork protection factors FANCD2 and BRCA1, suggesting blockage of these fork protection factors from loading to replication forks by MutSα. We find that the MutSα-dependent MRE11-catalyzed fork degradation induces DNA breaks and various chromosome abnormalities. Therefore, unlike the well-known MMR functions of ensuring replication fidelity, the newly identified MMR activity of promoting genome instability may also play a role in cancer avoidance by eliminating rogue cells.


Assuntos
Proteínas de Ligação a DNA , Hidroxiureia , Aminoácidos/genética , Arginina/genética , Adutos de DNA , Reparo de Erro de Pareamento de DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Hidroxiureia/farmacologia , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Nucleotídeos/metabolismo , Prolina/genética
13.
Mol Carcinog ; 61(11): 989-1001, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36121331

RESUMO

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, and the prognosis varies due to its high heterogeneity, systematic evaluation of HCC is mainly based on genomic and transcriptomic features, metabolomics-based classification has yet to be reported. Here we performed RNA-seq on 50 paired samples and metabolomics analysis on 72 paired samples of both normal and tumor tissues from HCC patients. Through unsupervised hierarchical cluster analysis with train and test data sets, metabolic and gene expression signatures were identified. We found that most fluxes related to glutamate are attenuated, except for the glutamate-proline pathway. Three subgroups were identified with distinct survival, clinical observations, and metabolic/gene signatures. S1 is characterized by a relatively poor prognosis, a low concentration of the degradation products of phosphatidylcholine and phosphatidylethanolamine, an enrichment of specific genes related to focal adhesion, and an upregulation of genes on chromosome 6q27. Beyond commonly downregulated metabolites, S2 tumors are largely characterized by few alterations in metabolites and genes, as well as low incidence of mutations/loss of heterozygosity, the metabolite signature of this group consists of hexoses and their phosphates, and the prognosis is the best, with a 5-year survival rate of greater than 80%. S3 is characterized by the worst survival (an approximately 20% 5-year survival rate), unsaturated fatty acid metabolites, an upregulation of specific genes involved in metastasis, and an upregulation of genes on chromosome 1q21. The metabolite-based classifications are more stable and reproducible, with each subgroup characterized by a distinct molecular signature and disease prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Glutamatos/genética , Glutamatos/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Metabolômica , Fosfatos/metabolismo , Fosfatidilcolinas , Fosfatidiletanolaminas , Prolina/genética
14.
Br J Cancer ; 127(11): 1954-1962, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175619

RESUMO

BACKGROUND: The von Hippel-Lindau disease is an autosomal dominant syndrome associated with tumour formation in various tissues, such as retina, central nervous system, kidney, and adrenal glands. VHL gene deletion or mutations support the development of various cancers. Unclassified VHL variants also referred as "of unknown significance" result from gene mutations that have an unknown or unclear effect on protein functions. The P81S mutation has been linked to low penetrance Type 1 disease but its pathogenic function was not clearly determined. METHODS: We established a stable cell line expressing the pVHL213 (c.241C>T, P81S) mutant. Using biochemical and physiological approaches, we herein analysed pVHL folding, stability and function in the context of this VHL single missense mutation. RESULTS: The P81S mutation mostly affects the non-canonical function of the pVHL protein. The cells expressing the pVHL213P81S acquire invasive properties in relation with modified architecture network. CONCLUSION: We demonstrated the pathogenic role of this mutation in tumour development in vhl patients and confirm a medical follow up of family carrying the c.241C>T, P81S.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Prolina/genética , Serina , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Mutação de Sentido Incorreto
15.
Biochim Biophys Acta Gene Regul Mech ; 1865(6): 194829, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35654390

RESUMO

BACKGROUND & AIMS: Pyrroline-5-carboxylate reductase 1 (PYCR1) upregulation contributes to the progression of gastric cancer (GC) and indicates poor survival. However, PYCR1 expression profile in GC subtypes and the mechanism behind its upregulation are not well-studied. METHODS: PYCR1 expression profiles in GC subtypes and different stages of gastric carcinogenesis were assessed in different GC cohorts. Genetic alterations and epigenetic modulation in PYCR1 regulation were further investigated using bioinformatics analysis and in vitro experiments. RESULTS: PYCR1 expression was significantly higher in intestinal-type GC and associated molecular subtypes in TCGA and ACRG GC cohorts. During the cascade of intestinal-type GC, PYCR1 was continuously increased from normal gastric tissues through to atrophic gastritis, to intraepithelial neoplasia, and to GC. Copy number alterations in PYCR1 were associated with PYCR1 transcript expression. One CpG island was observed in PYCR1 promoter region, and the hypomethylation occurred at this region could contribute to PYCR1 transcriptional activation in GC. Besides, H3K27ac combination was found in PYCR1 promoter, and acetyltransferase p300 induced H3K27ac could promote PYCR1 expression in GC. CONCLUSIONS: PYCR1 expression varies across GC subtypes, with intestinal-type GC and associated molecular subtypes having the highest expression. Hypomethylation at CpG sites and p300-induced H3K27ac modification within PYCR1 promoter could contribute to maintaining PYCR1 overexpression in GC. These results provide us with a new insight into epigenetic modulation in mitochondrial proline metabolism.


Assuntos
Neoplasias Gástricas , Ilhas de CpG/genética , Epigênese Genética , Humanos , Prolina/genética , Prolina/metabolismo , Pirrolina Carboxilato Redutases/genética , Pirrolina Carboxilato Redutases/metabolismo , Neoplasias Gástricas/genética
16.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563578

RESUMO

Spot blotch (SB) is a fungal disease that threatens wheat yield and quality. Presently, the molecular mechanism against SB is unclear. In this study, the resistant variety Zhenkang iron shell wheat (Yunmai 0030) and susceptible variety Lincang iron shell wheat (Yunmai 0608) were selected by identifying SB of Yunnan iron shell wheat. The metabolome and transcriptome of leaves of two varieties at different positions were detected using the systemic acquired resistance theory to investigate the molecular and physiological changes in Yunnan iron shell wheat under SB stress. We found that the genes and metabolites related to benzoxazinoid biosynthesis and arginine and proline metabolism were highly enriched after infection with leaf blight. The enriched differential metabolites mainly included phenolic acids, alkaloids, and flavonoids. We further observed that DIBOA- and DIMBOA-glucoside positively affected iron shell wheat resistance to leaf blight and proline and its derivatives were important for plant self-defense. Furthermore, we confirmed that the related metabolites in benzoxazinoid biosynthesis and arginine and proline metabolism positively affected Triticum aestivum ssp. resistance to SB. This study provides new insights into the dynamic physiological changes of wheat in response to SB, helps us better understand the mechanism of resistance to SB, and contributes to the breeding and utilization of resistant varieties.


Assuntos
Ascomicetos , Triticum , Arginina/genética , Ascomicetos/genética , Benzoxazinas , China , Resistência à Doença/genética , Ferro , Metaboloma , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Prolina/genética , Transcriptoma , Triticum/genética , Triticum/microbiologia
17.
Amyloid ; 29(4): 255-262, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35575118

RESUMO

BACKGROUND: ß2-microglobulin amyloidosis was first described in the 1980s as a protein deposition disease associated with long-term haemodialysis. More recently, two inherited forms resulting from separate point mutations in the ß2-microglobulin gene have been identified. In this report, we detail a novel ß2M variant, P32L, caused by a unique dinucleotide mutation that is linked to systemic hereditary ß2-microglobulin amyloidosis. METHODS: Three family members from a Portuguese kinship featured cardiomyopathy, requiring organ transplantation in one case, along with soft tissue involvement; other involvements included gastrointestinal, neuropathic and sicca syndrome. In vitro studies with recombinant P32L, P32G, D76N and wild-type ß2-microglobulin were undertaken to compare the biophysical properties of the proteins. RESULTS: The P32L variant was caused by the unique heterozygous dinucleotide mutation c.154_155delinsTT. Amyloid disease featured lowered serum ß2-microglobulin levels with near equal amounts of circulating P32L and wild-type proteins; amyloid deposits were composed exclusively of P32L variant protein. In vitro studies of P32L demonstrated thermodynamic and chemical instability and enhanced susceptibility to proteolysis with rapid formation of pre-fibrillar oligomeric structures by N- and C-terminally truncated species under physiological conditions. CONCLUSIONS: This work provides both clinical and experimental evidence supporting the critical role of P32 residue replacement in ß2M amyloid fibrillogenesis.


Assuntos
Amiloidose Familiar , Amiloidose , Humanos , Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose Familiar/genética , Microglobulina beta-2/metabolismo , Prolina/genética
18.
Cell Death Differ ; 29(5): 938-945, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383292

RESUMO

The p53 protein is structurally and functionally divided into five domains. The proline-rich domain is localized at amino acids 55-100. 319 missense mutations were identified solely in the proline domain from human cancers. Six hotspot mutations were identified at amino acids 72, 73, 82, 84, 89, and 98. Codon 72 contains a polymorphism that changes from proline (and African descent) to arginine (with Caucasian descent) with increasing latitudes northward and is under natural selection for pigmentation and protection from UV light exposure. Cancers associated with mutations in the proline domain were considerably enriched for melanomas and skin cancers compared to mutations in other p53 domains. These hotspot mutations are enriched at UV mutational signatures disrupting amino acid signals for binding SH-3-containing proteins important for p53 function. Among the protein-protein interaction sites identified by hotspot mutations were MDM-2, a negative regulator of p53, XAF-1, promoting p53 mediated apoptosis, and PIN-1, a proline isomerase essential for structural folding of this domain.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53/genética , Genótipo , Humanos , Mutação de Sentido Incorreto , Fenótipo , Prolina/genética , Prolina/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Front Biosci (Landmark Ed) ; 27(12): 336, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36624948

RESUMO

BACKGROUND: Pyrroline-5-carboxylate reductase (PYCR) includes three human genes encoding three isozymes, PYCR1, PYCR2, and PYCR3 (or PYCRL), which facilitate the final step in the conversion of glutamine to proline. These genes play important roles in regulating the cell cycle and redox homeostasis as well as promoting growth signaling pathways. Proline is abnormally upregulated in a variety of cancers, and as the last key enzyme in proline production, PYCR plays an integral role in promoting tumorigenesis and cancer progression. However, its role in patients with kidney renal papillary cell carcinoma (KIRP) has not been fully elucidated. In this study, we aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of PYCR in patients with KIRP, elucidate the association between PYCR expression and KIRP, and identify potential new targets for the clinical treatment of KIRP. METHODS: We systematically analyzed the expression, prognosis, gene regulatory network, and regulatory targets of PYCR1, PYCR2, and PYCRL in KIRP using multiple online databases including cBioPortal, STRING, MethSurv, GeneMANIA, Gene Expression Profiling Interactive Analysis (GEPIA), Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS: The expression levels of PYCR1, PYCR2, and PYCRL were considerably upregulated in patients with KIRP based on sample type, sex, age, and individual cancer stage. PYCR1 and PYCR2 transcript levels were markedly upregulated in females than in males, and patients aged 21-40 years had higher PYCR1 and PYCR2 transcript levels than those in other age groups. Interestingly, PYCR2 transcript levels gradually decreased with age. In addition, the expressions of PYCR1 and PYCR2 were notably correlated with the pathological stage of KIRP. Patients with KIRP with low PYCR1 and PYCR2 expression had longer survival than those with high PYCR1 and PYCR2 expression. PYCR1, PYCR2, and PYCRL were altered by 4%, 7%, and 6%, respectively, in 280 patients with KIRP. The methylation levels of cytosine-phosphate-guanine (CpG) sites in PYCR were markedly correlated with the prognosis of patients with KIRP. PYCR1, PYCR2, PYCRL, and their neighboring genes form a complex network of interactions. The molecular functions of the genes, as demonstrated by their corresponding Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, included calcium channel activity, phospholipid binding, RNA polymerase II-specificity, and kinase and GTPase-regulatory activities. PYCR1, PYCR2, and PYCRL targeted miR-21, miR-221, and miR-222, resulting in a better prognosis of KIRP. We analyzed mRNA sequencing data from 290 patients with KIRP and found that ADA, NPM3, and TKT were positively associated with PYCR1 expression; PFDN2, JTB, and HAX1 were positively correlated with PYCR2 expression; SHARPIN, YDJC, and NUBP2 were positively correlated with PYCRL expression; PYCR1 was positively correlated with B cell and CD8+ T-cell infiltration levels; macrophage infiltration was negatively correlated with PYCR2 expression; and PYCRL expression was negatively correlated with B-cell, CD8+ T cell, and dendritic cell infiltration levels. CONCLUSIONS: PYCR1, PYCR2, and PYCRL may be potential therapeutic and prognostic biomarkers for patients with KIRP. The regulation of microRNAs (miRNAs), including miR-21, miR-221, and miR-222, may prove an important strategy for KIRP treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Masculino , Feminino , Humanos , Redes Reguladoras de Genes , Carcinoma de Células Renais/genética , MicroRNAs/genética , Neoplasias Renais/genética , Rim/metabolismo , Prolina/química , Prolina/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Pirrolina Carboxilato Redutases/genética , Pirrolina Carboxilato Redutases/metabolismo
20.
Biomolecules ; 11(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680148

RESUMO

Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.


Assuntos
Dicetopiperazinas/química , Dipeptídeos/química , Neoplasias/tratamento farmacológico , Prolina/química , Dicetopiperazinas/uso terapêutico , Dipeptídeos/genética , Dipeptídeos/uso terapêutico , Descoberta de Drogas , Humanos , Neoplasias/genética , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/uso terapêutico , Prolina/genética , Prolina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA